

Tema:

CIÊNCIA, TECNOLOGIA E INOVAÇÃO: A universidade e a construção do futuro

17º Congresso de Iniciação Científica

EFEITO DO USO DE CONTRACEPTIVOS ORAIS NA MODULAÇÃO AUTONÔMICA DA FREQÜÊNCIA CARDÍACA EM MULHERES NA PRÉ MENOPAUSA

Autor(es)
VANESSA SOLIANI CELANTE
Orientador(es)
ESTER DA SILVA
Apoio Financeiro
PIBIC/CNPQ
1. Introdução

No início da década de 60, observações clínicas apontaram uma associação entre o uso de contraceptivos orais de altas dosagens com o aumento frequente de acometimentos agudos de infarto do miocárdio, hemorragias, tromboembolismo venoso e elevação da pressão arterial sistólica (PAS) e aumento do risco de doença cardiovascular (Vessey, 1969).

A partir da década de 80 até os dias de hoje, foram desenvolvidos os contraceptivos orais (CO) com baixas doses de estrogênio e progesterona, sendo chamados de terceira geração. Estes reduziam reações adversas como, hipersensibilidade, irritabilidade, cefaléia, náuseas, retenção de líquidos e alteração no peso corporal, além de diminuírem o risco de doenças cardiovasculares (Vessey, 1980; Sherif, 1999; Schwingl et al., 1999).

Muitos estudos discutem o uso de CO como sendo um fator de risco importante para o desenvolvimento de doença arterial coronariana (DAC), porém, ainda existem muitas controvérsias sobre este tema. Alguns autores relatam que o uso de baixas doses de CO não aumenta o risco cardiovascular, a não ser quando este está associado com o hábito de fumar ou em mulheres com mais de 30 anos (Sidney et al., 1996; Schwingl et. al., 1999; Sherif, 1999; Foulon et al. 2001; Schueller et al., 2005). Sabe-se que a terceira geração de CO combinados de etinilestradiol (EE) e progesterona (gestodeno - GEST ou desogestrel - DSG), foi introduzida para reduzir os efeitos adversos dos CO, especialmente os riscos de DAC (Kmmeerren et al., 2004; Krivak, 2007), porém, há uma relação entre alterações nos status inflamatórios com o uso destes compostos e isso pode ter implicações para o desenvolvimento de tromboembolismo venoso e DAC (Cauci, 2008).

Assim, tendo em vista que alguns autores relatam que o uso de contraceptivo oral pode representar um fator de risco para DAC, justifica-se a realização da avaliação da modulação autonômica da FC, a partir de sua variabilidade (VFC) a qual nos fornece informações sobre integridade neurocárdica, sendo um importante preditor de morbidade e de mortalidade (Bigger et al., 1992; Task Force, 1996).

2. Objetivos

Investigar a influência do uso de contraceptivos orais sobre a modulação autonômica da frequência cardíaca em mulheres na pré-menopausa, com estilo de vida sedentário, na condição de repouso nas posturas supina e sentada.

3. Desenvolvimento

Aspectos éticos: Respeitando as normas de conduta em pesquisa experimental com seres humanos (Resolução 196/96 do Conselho Nacional de Saúde (CNS), este estudo foi aprovado pelo Comitê de Ética em Pesquisa da UNIMEP sob protocolo nº 43/06. As voluntárias foram informadas e esclarecidas a respeito dos objetivos e da metodologia experimental que seriam submetidas, explicitando o caráter não-invasivo dos mesmos.

Foram entrevistadas e selecionadas 20 mulheres saudáveis, idade 33,75±3,09 anos, com estilo de vida sedentário (classificação aeróbia "regular" de acordo com a American Heart Association, 1972), na pré menopausa as quais foram divididas em 2 grupos: 10 pertencentes ao grupo com terapia (GCT), e 10 ao grupo sem terapia (GST).

Todas as avaliações foram realizadas no Laboratório de Pesquisa em Fisioterapia Cardiovascular e de Provas Funcionais da Faculdade de Ciências da Saúde (FACIS) da Universidade Metodista de Piracicaba – UNIMEP, em condições ambientais controladas com temperatura de 22-24 °C e umidade relativa do ar 40-60%. Os sinais do eletrocardiograma (ECG) foram captados a partir do monitor cardíaco de 1 canal (MINISCOPE II – Instramed – Porto Alegre, RS, Brasil) e processados por meio de um conversor analógico/digital de 8 canais (Lab-PC+/ National Instruments Co, Austin, TX, USA) que constitui uma interface entre o monitor cardíaco e o microcomputador. A FC foi obtida em tempo real, batimento a batimento, após a conversão analógico/digital em uma frequência de amostragem de 500 Hz e iR-R do ECG foram calculados utilizando um software específico (Silva et al., 1994). Para avaliar o efeito da posição corporal sobre a resposta da FC e de sua variabilidade, os intervalos R-R foram registrados por um período de 15 minutos em repouso, com as voluntárias nas posições supina e sentada, respectivamente, e respirando espontaneamente.

Para as voluntárias do grupo com terapia (GCT) as captações foram realizadas sempre no último dia de medicação (21º dia – fase ativa) e no último dia sem medicação antes de recomeçar a cartela (28º dia – fase inativa). Esta metodologia foi adotada a partir de um estudo realizado por Casazza et al. 2002), que avaliou suas voluntárias nessas fases. Já no grupo sem terapia (GST) foi realizado apenas uma coleta, sendo esta entre o 7º e 10º do ciclo menstrual (fase folicular), pois, durante esse período ocorrem menores flutuações hormonais.

Todos os experimentos foram realizados na mesma hora do dia (entre as 14:00h e 17:00h), como objetivo de evitar as influências do ciclo circadiano nas variáveis estudadas.

A VFC foi analisada no domínio do tempo e da freqüência. Para isto foi selecionado o trecho de maior estabilidade da captação dos intervalos R-R, de forma que o mesmo apresentasse no mínimo 256 batimentos consecutivos (Task Force, 1996). No domínio do (DT), foi realizada a partir dos índices RMSSD (raiz quadrada da somatória do quadrado das diferenças entre os iR-R no registro, divididos pelo número de iR-R da série de dados selecionados menos um); RMSM (raiz quadrada da somatória do quadrado das diferenças dos valores individuais em relação ao valor médio, dividido pelo número de iR-R da série de dados selecionados) e pNN50 (percentagem dos iR-R adjacentes com diferença maior que 50 ms).

Para análise no domínio da frequência (DF), utilizou-se o procedimento de retirada de tendência linear e a transformada rápida de Fourier foi aplicada em janela única, na sequência dos valores dos iR-R, previamente selecionados. Os componentes espectrais de potência foram computados nas bandas de baixa (BF: 0,04-0,15Hz) e alta frequência (AF: 0,15-0,4Hz), em unidades absolutas (ms²) e em unidades normalizadas (un), as quais correspondem ao percentual do espectro total de potência subtraído do componente de muito baixa frequência (MBF: 0,003-0,04Hz). Desde que a banda de BF é modulada por ambas as divisões do sistema nervoso autônomo, simpático e parassimpático, e a banda de AF é correlacionada ao controle vagal, a razão BF/AF foi calculada para avaliar o balanço simpatovagal (Antila, 1979).

Análise estatística: Para amostras não pareadas de Mann-Whitney e para análise pareada foi utilizado o teste de Wilcoxon, com nível de significância = 5%.

4. Resultado e Discussão

Verifica-se na tabela 1, os dados estão expressos em mediana e foram analisados no domínio do tempo, a partir dos índices RMSSD (ms), RMSM (ms), pNN50 (%), iR-R(ms) e no domínio da frequência, por meio dos índices BF (un) e AF (un) e da razão BF/AF. Observa-se que não houve diferença estatisticamente significante (p>0,05) na comparação entre GST e GCT tanto na fase ativa como na inativa na postura supina e na postura sentada.

Na tabela 2, os dados expressos mostram que também não houve diferença significativa na comparação entre as fases ativa e inativa do GCT (p>0,05).

A associação entre estrogênio exógeno e DAC ainda é controverso. Mendelsohn e Karas (1999) referem que o estrógeno endógeno tem um efeito cardioprotetor por meio do aumento a vasodilatação e inibição da resposta do vaso sanguíneo para as injúrias e também para o desenvolvimento da aterosclerose. Já estudos têm reportado que o uso da terapia estrogênica protege contra o desenvolvimento de DAC em mulheres na pós-menopausa (Neves, 2007).

No presente estudo, os índices no DT (RMSSD, RMSM e pNN50) e DF (AF, BF e BF/AF) não apresentaram diferença estatisticamente significante (p>0,05) quando se comparou o GST com o GCT tanto na fase ativa como na fase inativa, nas posturas supina e sentada, sendo esses achados concordantes com os estudos de Shueller (2006), que não encontrou alterações na modulação autonômica da FC quando comparou mulheres que tomavam contraceptivos com que não tomavam e tinham seu ciclo menstrual regular.

Dessa forma nossos resultados não suportam a hipótese de que o uso de CO atuaria de forma deletéria na função neurocárdica, uma vez que nenhuma diferença foi observada entre os grupos controle e terapia para as variáveis mensuradas.

5. Considerações Finais

A partir desses resultados, conclui-se que o uso de contraceptivos orais não influenciou nos índices da modulação autonômica cardíaca de mulheres sedentárias e isto pode estar atribuído ao uso de baixas dosagens de CO combinados com progesterona pertencente à terceira geração.

Referências Bibliográficas

ANTILA, K. Quantitative characterization of heart rate during exercise. Scand. J. Clin. Lab. Invest. v.80, p.153-155, 1979.

BIGGER, JT Jr, FLEISS, J.L, STEINMAN, R.C, ROLNITZKY, L.M, KLEIGER, R.E, ROTTMAN, J.N. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. v.85, p.164-171, 1992.

CASAZZA GA, SUH SH, MILLER BF, NAVAZIO FM, BROOKS GA. Effects of oral contraceptives on peak exercise capacity. J Appl Physiol. n.93, v.5, p. 1698-702, 2002.

CAUCI S, Di SANTIOLO M, CULHANE JF, Stel G, GONANO F, GUASCHINO S. Effects of third-generation oral contraceptives on high-sensitivity C-reactive protein and homocysteine in young women. Obstet Gynecol. v. 111, n.4, p. 857-64, 2008.

FOULON, T., et al. Effects of two low-dose oral contraceptives containing ethinylestradiol and either desogestrel or levonorgestrel on serium lipds and lipoproteins with particular regard to LDL size. Contraception. n.64, v.1, p. 11-16, 2001.

KEMMERREN JM, ALGRA A, MEIJERS JC, Tans G, BOURNA BN, CURVES J, et al. Effect of second and third generation oral contraceptives on the protein C system in the absence or presence of the factor V Leiden mutation: a randomized trial. Blood. n. 33, p. 103-922, 2004.

KRIVAK TC, ZORN KK. Venous thromboembolism in obstetrics and gynecology. Obstet Gynecol. n.77, p. 109-761, 2007.

MENDELSOHN ME, KARAS RH. The protective effects of estrogen on the cardiovascular system. N Eng J Med. n.340, v. 23, p. 1801-1811, 1999.

NEVES, V. F., et al. Autonomic modulation of heart rate of young and postmenopausal women undergoing estrogen therapy. Braz J Med Biol Res. n. 40, v. 4, p. 491 -9, 2007.

SCHUELLER, P.O, et al. Effects of synthetic progestagens on autonomic tone, neurohormones and C-reactive protein levels in young healthy females in reproductive age. Int J Cardiol.n.111, v.1, p. 42-8, 2006.

SIDNEY, S. et al. Myocardial Infarction in users of low-dose oral contraceptives. Obstet Gynecol. n.88, p. 939-44, 1996.

SHERIF, K. Benefits and risks of oral contraceptives. Am J Obstet Gynecol. n.180, p. 343-8,1999.

SCHWINGL PJ, SHELTON J. Modeled estimates of myocardial infarction and 20. venous thromboembolic disease in users of second and third generation oral contraceptives. Contraception. n.55, v. 3, p.125-9, 1997.

SILVA, E., et al. Design of a computerized system to evaluate the cardiac function during dynamic exercise. Annals of the World Congress on Medial Phys. and Biom. Enginering, n.1, v.3, p. 419, 1994.

TASK FORCE - Heart rate variability - Standards of measurement, physiological interpretation and clinical use. Circulation. n.17, v.3, p. 354-81, 1996.

VESSEY, M.P. Female hormones and vascular disease: epidemiologic overview, Br J Fam Plann. n.6, v.1, p.1-12, 1980.

Anexos

Tabela 1: Valores em mediana dos índices da variabilidade da frequência cardíaca dos grupos GCT (fase ativa: 21º dia e fase inativa: 28º dia) e GST, na postura supina.

	Variáveis	Grupos					
			GST (n=10)				
	3	Fase ativa	р FA x C	Fase inativa	p FI x C	Controle	
	RMSSD (ms)	32,05	0,19	31,93	0,40	46,66	
D T	RMSM (ms)	32,45	0,21	39,14	0,49	49,40	
	PNN50 (%)	10,46	0,32	8,47	0,54	26,43	
D F	BF (un)	0,40	0,32	0,44	0,32	0,51	
	AF (un)	0,59	0,82	0,55	0,76	0,56	
	BF/AF	0,68	0,80	0,81	0,82	0,80	

Domínio do tempo (DT); domínio da frequência (DF); FA= fase ativa; FI= fase inativa; C= controle; GCT= grupo com terapia; GST= grupo sem terapia;

Tabela 2: Valores em mediana dos índices da análise da variabilidade da frequência cardíaca dos grupos GCT (fase ativa: 21º dia e fase inativa: 28º dia) e GST.

Variáveis				Grupos		
			GST (n=5			
		Fase ativa	р FAхС	Fase inativa	р FI x C	Controle
	RMSSD (ms)	43,13	0,65	54,03	0,59	37,50
D T	RMSM (ms)	49,82	0,32	57,43	0,19	47,84
3.5	PNN50 (%)	22,59	0,44	28,89	0,25	16,20
D F	BF (un)	0,51	0,76	0,52	0,76	0,54
	AF (un)	0,48	0,65	0,47	0,65	0,45
	BF/AF	1,05	0,76	1,14	0,76	2,11

Domínio do tempo (DT); domínio da frequência (DF); FA= fase ativa; FI= fase inativa; C= controle; GCT= grupo com terapia; GST= grupo sem terapia; ms=milisegundos; un= unidades normalizadas; n= número de voluntárias