

15° Congresso de Iniciação Científica

EFEITO DE UMA FORMULAÇÃO CONTENDO DMAE (DIMETILA MINOETANOL) NO SISTEMA TEGUMENTAR. ESTUDO EXPERIMENTAL EM SUÍNO

Autor(es)	
GUSTAVO NARVAES GUIMARÃES	
Orientador(es)	
Maria Luiza Ozores Polacow	
Apoio Financeiro	

1. Introdução

FAPIC

A pele humana é formada pela epiderme e pela derme, sendo que na epiderme localiza-se a camada ou estrato córneo, que é a maior barreira para a entrada de uma substância no corpo (RIEGER, 1993). O envelhecimento cutâneo é um fenômeno biológico complexo que resulta da combinação de dois fatores: envelhecimento intrínseco, relacionado à diminuição da capacidade proliferativa e da atividade biosintética das células cutâneas, resultando em afinamento da epiderme, diminuição da espessura dérmica e da vascularização e redução no número de fibroblastos, e o envelhecimento extrínseco, causado pela exposição ambiental, principalmente luz ultravioleta (UV) relacionando-se com uma desorganização da matriz dérmica (JENKINS, 2002). Pesquisas científicas sobre os processos que envolvem o envelhecimento cutâneo, bem como os mecanismos moleculares relacionados a estes processos, estão emergindo a fim de estabelecer estratégias para impedir que os efeitos indesejáveis da idade revelem-se na aparência da pele. Com o envelhecimento, as substâncias químicas e os precursores nutricionais que tonificam os músculos começam a diminuir. Desta forma, a aplicação dos chamados tensores cutâneos seriam capazes de fortalecer a pele a fim de evitar a flacidez da mesma. A acetilcolina, a colina e o dimetilaminoetanol (DMAE), um análogo sintético da colina, são bons candidatos para o efeito tensor, uma vez que estudos científicos mostram que os receptores colinérgicos presentes na superfície celular podem modular a proliferação, diferenciação, migração e viabilidade (UHODA et al., 2002). A partir de 1999 tem ocorrido uma divulgação intensa da experiência clínica com o DMAE aplicado topicamente em preparações cosméticas visando um efeito tensor com uma ação anti-envelhecimento (FONSECA, 2003). Embora o uso dermatológico do dimetilaminoetanol seja recente alguns dermatologistas vêm prescrevendo o uso desta substância. Grossman (2005) relatou baseado em observações clínicas, efeitos na melhora da aparência da pele envelhecida, no aumento de firmeza na área dos olhos, lábios e bochechas, bem como na diminuição de

linhas frontais horizontais. Os silicones vêm sendo utilizados como base, com o intuito de melhorar o sensorial e a eficácia das formulações cosméticas, podendo ainda melhorar a aparência da pele, já que contribuiem para a hidratação cutânea (LEONARDI et al., 2007). O DMAE pode ser encontrado na forma líquida - DMAE-Pidolato e na forma de pó - DMAE Acetoaminobenzoato. O DMAE-Pidolato é um derivado do DMAE, sendo que o seu mecanismo de ação ainda não é bem elucidado, mas sabe-se que ajuda a regular a perda de água através da pele. É indicado para hidratar peles secas e flácidas; aumentar a firmeza da pele; e diminuir as linhas de expressão (GALENA, 2007). Já o DMAE Acetoaminobenzoato é um éster de DMAE, e se apresenta como um pó branco à levemente amarelado, ligeiramente solúvel em água e facilmente solúvel em álcool. Os efeitos de substâncias ativas na pele podem ser observados por meio de estudos histopatológicos permitindo uma avaliação qualitativa das diversas estruturas presentes na pele e deve ser complementada pela histometria, por meio da qual é possível determinar quantitativamente dados de espessura da epiderme e derme, possibilitando a aplicação de testes estatísticos. Estas avaliações dos efeitos das formulações e dos tratamentos físicos anti-envelhecimento na espessura das camadas da pele são importantes, visto que com o envelhecimento ocorrem alterações degenerativas como, por exemplo, redução na espessura (CHAPPARD et al., 1991) e alterações na epiderme influenciam a formação de rugas no início dos estágios do fotoenvelhecimento. De acordo com Bronaugh; Maibach, (1989), a espessura da camada córnea dos suínos é semelhante à pele humana e como esta camada é considerada a principal barreira à permeação, justificado a escolha deste animal como modelo experimental. As fibras colágenas são as principais e mais abundantes fibras do tecido conjuntivo denso, constituinte da derme. A observação das fibras colágenas é importante quando se pretende avaliar os efeitos de formulações com finalidade anti-envelhecimento, pois estão diretamente envolvidas com as propriedades mecânicas do tecido cutâneo. As variações na ordem do estado de organização são detectadas e medidas nos feixes de colágeno através da sua birrefringência (CUNHA et al., 2001). Segundo Cunha et al. (2001), em muitos estudos têm-se usado o microscópio de polarização para examinar qualitativamente e quantitativamente a organização e estado de agregação e a ordem molecular das fibras colágenas com as medidas do retardamento óptico devido à birrefringência. Tendo em vista o exposto, aventa-se a hipótese de que o uso de formulações contendo DMAE em base de silicone pode alterar a espessura da epiderme, bem como a quantidade ou organização de colágeno na derme.

2. Objetivos

Estudar os efeitos de uma formulação acrescida de DMAE na pele de suínos, por meio de estudos histopatológicos e histométricos.

3. Desenvolvimento

Suinos (n=5) machos adultos tiveram a superfície dorsal tricotomizada e isolada em 4 áreas de 8 cm de diâmetro cada uma e submetidas aos seguintes tratamentos diários durante 15 dias: Controle (C), Silicone (S=80% DCLC silicone Blend), F1 (80%DCLC silicone Blend, 3% DMAE acetoamidobenzoato, água destilada), F2 (80% DCLC silicone Blend, 3% DMAE pidolato, água destilada). Após sacrifício por perfuração cardíaca, fragmentos de pele foram fixados em formol 10% tamponado e tratados convenientemente para coloração por HE e Picrosírius 1%. Foram obtidos 5 cortes histológicos de 5 µm em cada lâmina para cada animale com uma ocular milimetrada (ZEISS) foi medida a espessura da epiderme e da camada córnea em 10 áreas para cada corte. Para a análise histopatológica utilizou-se uma ocular reticulada de 10x (ZEISS) e objetiva de 100x onde se obteve, para cada corte histológico, a densidade do número de fibroblastos e leucócitos de dez áreas(22500 µm2 cada)da derme papilar. Para avaliação da birrefringência das fibras colágenas, utilizou-se o microscópio óptico de polarização (Zeiss Axiolab - ZEISS -Alemanha) com lente objetiva em aumento de 40x e com uma microcâmera (Microcâmera Sony CCD IRIS / RGB COLOR – Japão). Para cada corte histológico foram obtidas medidas de cinco áreas de 10.000 mm2 cada com auxílio de um analisador de imagens (KS 400 2.0 – Kontron Eletronics, Munique, Alemanha). Todas as medidas foram submetidas a análise da variância (ANOVA), e utilizado o teste F para verificar a diferença entre os tratamentos. O detalhamento da análise foi feito pelo teste de Tukey, considerando-se

4. Resultados

Os resultados deste trabalho mostraram para a epiderme de suínos espessura de 66,4 mm, valor muito próximo ao encontrado por Bronaugh et al. (1982) 65,8 mm, podendo-se concluir que a metodologia aqui utilizada foi adequada. O grupo tratado com a formulação F1 (DMAE acetoamidobenzoato) apresentou redução (não significativa) da camada córnea em relação ao controle. Este resultado já era esperado, pois análises clínicas das áreas tratadas com esta formulação apresentaram-se ressecadas, com descamação e pigmentadas. Já os resultados apresentados na Tabela 1 mostram que o grupo tratado com F2 (DMAE pidolato, que é líquido) apresentou significativo aumento (p<0,05) na espessura da camada córnea, o que pode ser explicado pelo mecanismo de ação do DMAE pidolato, pois sabe-se que ele ajuda a regular a perda de água através da pele, sendo indicado para hidratar peles secas e flácidas (GALENA, 2006). Vale salientar aqui a importância da base na qual o princípio ativo é incorporado, que é fundamental para a estabilidade e permeação deste na pele. O Silicone vem sendo utilizado como base, com o intuito de melhorar o sensorial e a eficácia das formulações cosméticas, melhorar a aparência da pele, já que contribui para a hidratação cutânea (LEONARDI et al, 2007). Neste trabalho, a base isolada apresentou aumento não significativo (p> 0,05) da espessura da camada córnea, o que indica que o DMAE pidolato associado com silicone, foi mais eficiente na hidratação da pele. Pela Tabela 1, observa-se significativo aumento da espessura da epiderme de suínos nas áreas submetidas aos tratamentos com DMAE, tanto com F1, como com F2. Resultado semelhante foi encontrado por Tadini (2005), que utilizou a somente a formulação F1, mas em pele ratos. O estudo histopatológico não evidenciou diferenças no número de fibroblastos e de leucócitos na derme das áreas tratadas e controle, evidenciando que nenhuma destas formulações foi irritante para a pele (tabela 2). As fibras colágenas são as principais e mais abundantes fibras do tecido conjuntivo têm força tênsil e são birrefringentes ao microscópio de polarização sendo esta a melhor maneira de se estudar a ordem molecular e o grau de agregação destas fibras. (VIDAL, 2003). observou que formulações contendo DMAE provocaram aumento significativo da espessura da derme sugerindo que o mecanismo de ação do DMAE pode estar relacionado com efeitos nesta camada. Porém, mediu apenas a espessura, o que não representa fielmente o grau de organização, bem como a quantidade das fibras colágenas. Além disso, usou como modelo experimental pele de rato que não é semelhante a de humanos. A Tabela 3 mostra que não houve diferença significativa das áreas birrefringentes entre os diferentes grupos experimentais, podendo-se concluir que não houve alteração na secreção nem na formação de fibras colágenas da derme de pele submetida aos diversos tratamentos em relação ao controle. Estudo recente mostrou que o DMAE diminuiu a proliferação de fibroblastos humanos em cultura de tecido (GIANNOCCARO et al., 2007). Este resultado é preocupante visto que estas células são as responsáveis pela síntese de colágeno. Embora sejam poucas as comprovações científicas, alguns dermatologistas vêm prescrevendo seu uso, demonstrando a importância de trabalhos científicos com esta substância.

5. Considerações Finais

A formulação contendo DMAE pidolato mantém a epiderme, bem como a camada córnea mais espessa, provavelmente pela hidratação que ele confere. Nenhuma das formulações utilizadas, DMAE acetoamidobenzoato (F1) e DMAE pidolato (F2) provocou irritação na derme mas a F1 provocou descamação da camada córnea. Com não foram observadas diferenças na quantidade do colágeno da derme pode-se concluir que neste modelo experimental o DMAE não provocou efeito tensor.

Referências Bibliográficas

BRONAUGH, R. L. Determination of percutaneous absorption by *In Vitro* techniques. In: BRONAUGH, R. L., MAIBACH, H. I.

BRONAUGH, R. L., STEWART, R. F., CONGDON, E. R. Methods for *In Vitro* percutaneous absorption studies. II. Animal models for human skin. Toxicol. Appl. Pharmacol.,62: 481-488, 1982.

CHAPARD, D.; ALEXANDRE, C.; ROBERT, J.M.; RIFFAT, G. Relationships between bone and skin atrophies during aging. Acta Anat., Basel, 141:239-244,1991.

CUNHA, A.; PARIZOTTO, N.A.; VIDAL, B.C. The effect of therapeutic ultrasound on repair of the achiles tendon (tendo calcaneus) of the rat. Ultrasound in Medicine and Biology, 27 (12): 1691-1696, 2001.

FONSECA, S. DMAE: A evolução do uso interno à cosmética. *International Journal of Pharmaceutical Compounding*. Ed bras. 5 (4): 149-150, 2003.

GALENA. Literatura Técnica. São Paulo, 2007.

GALENA. Notícias Galena. Ed. 139, p. 20-22, set/out 2006.

GIANNOCCARO, F.B.; GRAGNANI FILHO, A.; FERREIRA, L.M. Cultivo de fibroblastos com DMAE. Cosmetics & Toiletries, 19(1): 59-61, 2007.

GROSSMAN, R. The Role of dimethylaminoethanol in cosmetic dermatology. Am. J. Clin. Dermatol. Auckland, v.6, n.1, p.39-47, 2005.

JENKINS, G. Molecular mechanisms of skin ageing. Mechanisms of Ageing and Development. 123:801–810, 2002

LEONARDI, G.R.; ANDRIGO, F.; POLACOW, M.L.O.; FORNASARI, C.; PIRES-DE CAMPOS, M.S.M.; MONTEBELO, M.I.; PICIRILI, C. A.D.; Avaliação de eficácia de emulsão de silicone em rugas periorbitais e nasolabiais. Cosmetics & Toiletries, 19(3): 128-129, 2007.

RIEGER, M. Factors affecting absorption of topically applied substances. In: ZATZ, J. L. Skin Permeation: Fundamentals and Application. Wheaton, Allured Publishing Corporation, 1993. p.33-72.

TADINI, K. A. Desenvolvimento e avaliação da eficácia de formulações dermocosméticas contendo dimetilaminoetanol (DMAE). Dissertação de Mestrado. Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo (148 p), 2005.

UHODA, I.; FASKA, N.; ROBERT, C.; CAUWENBERGH, G.; PIÉRARD, G.E. Split face study on the cutaneous tensile effect of 2-dimethylaminoethanol (deanol) gel. Skin Research and Technology. 8:164-167, 2002.

VIDAL, B.C. Image analysis of tendon helical superstructure using interference and polarized light microscopy. Micron, 34: 423-432, 2003.

Anexos

Tabela 1 – Média e Desvio Padrão da espessura da Camada cómea (μm) e da Epiderme (μm) dos grupos experimentais, Controle, Silicone, Silicone + DMAE acetoamidoberzoato (F1) e Silicone + DMAE pidolato (F2).

Grupos	Camada Cómea		Epiderne	
	Médias	Desv. Padrão	Médias	Destr. Padrão
Controle	19,02 ab	1,81	66,77 a	1,99
Silicone	22,52 a	4,31	71,26 a	2,36
Fl	15,80Ъ	1,55	88,45Ъ	6,13
F2	34,30 c	5,63	96,28Ъ	5,46

Médias seguidas de letras iguais não diferem entre si e nédias seguidas de letras diferentes diferementre si pelo Teste de Tukey (p<0,05).

Tábela 2 – Média e Desvio Padrão do número dos diferentes tipos celulares encontrados na derme papilar numa área de 22,500 μm² dos grupos experimentais, Controle, Silicone, Silicone + DMAE acetoamidob enzoato (F1) e Silicone + DMAE pidolato (F2).

				
Grupos	Fib rob lastos		Leucócitos	
	Médias	Desv. Padrão	Médias	Desv. Padrão
Controle	2,26 a	0,28	0,40 a	0,03
Silicore	2,06 a	0,40	0,48 a	0,16
Fl	2,46 a	0,35	0,65 a	0,14
F2	2,70 a	0,07	0,50 a	0,14

Médias seguidas de letras iguais não diferem entre si e nédias seguidas de letras diferentes diferem entre si pelo Teste de Tukey (p<0,05).

Tabela 3 — Média e Desvio Padrão das áreas birrefiringentes (µm²) dos grupos experimentais, Controle, Silicone, Silicone + DMAE acetoamidoberzoato (F1) e Silicone + DMAE pidolato (F2).

Grupos	Médias	Desvios Padrão	
Controle	8286,62 a	525,96	
Silicone	8918,43 a	404,68	
Fl	8048,74 a	847,06	
F2	7512,81 a	761,40	

Médias seguidas de letras iguais não diferem entre si e médias seguidas de letras diferentes diferementre si pelo Teste de Tukey(p<0,05).