Learning factories:
Excellence in education of manufacturing engineering

Process Learning Factory CiP

Prof. Dr.-Ing. E. Abele
Prof. Dr.-Ing. J. Metternich
Dipl.-Wirts.-Ing. Stefan Seifermann

Institute of Production Management, Technology and Machine Tools
Technische Universität Darmstadt

www.prozesslernfabrik.de
Welcome to our Institute PTW

Main Fields of Application:
- Mechanical Engineering
- Automotive
- Aerospace
- Dental Technology

Production Organization

Sustainable Production

Management of industrial Production

Center for industrial Productivity (Process Learning Factory)
Initial situation for a new approach

Survey among 50 staff managers and directors:
• What are alumni of Technische Universität Darmstadt good at?
• Where is a need for improvements?

Results

• 70% of the students are going to work within the departments of production, development or quality assurance
• As future employees in production, the alumni lack of:
 – Knowledge about processes and Lean methods
 – Skills in the establishment and adaption of production systems
 – Perception of ideal workflows in manufacturing and enthusiasm for continuous improvement
Learning by experience on the shopfloor builds lasting knowledge and skills

We keep in mind only a part of the things we perceive:

- 10% of what we read
- 20% of what we hear
- 30% of what we see
- 50% of what we hear & see
- 70% of what we say
- 90% of what we do
First steps: Questions considered from idea to realisation

- Range of topics?
- Didactic methods?

- Managers and Professionals from industry?
- Bachelor and Master students?

- Products?
- Used Technologies?

- Partners?
- Provision of finance?

Initial questions (2005)

Content

Target groups

Hardware

Realisation
Process learning factory CiP at Technische Universität Darmstadt: Milestones in recent years

- Initial situation
- Inauguration
- Award winner
- Expansion Machining
- Expansion Intra-logistics

One vision - Many questions

Building concept

Start of Education

Expansion Indirect processes

Trans-European Dissemination

2005 2006 2007 2008 2009 2010 2011
CiP – the product range is chosen to cover different production characteristics

Low Variety Production: Pneumatic Cylinder

- Realization of complete value stream including machining, assembly and indirect processes (order fulfillment)
 - Pneumatic cylinder

Low Volume, high variety: Gearbox Motor

- About 4,000 different variants are possible
 - Electric Motor

Chaku Chaku Machining: Key Fob (as give away)

- Flexible adaption of machining centers to volume and product
 - Key Fob
The hardware in the learning factory represents a midsize factory in series production.
Properties and probable application ranges of learning factories

Probable application ranges

- **Education**
 - Universities
 - Vocational schools
 - Enterprises

- **Advanced Training**
 - Groups
 - Small and medium sized enterprises
 - Job-seekers

- **Knowledge platform**
 - Innovations
 - Testing environment
 - Application

- **Network**
 - Learning factories
 - Industry
 - High schools

Learning factory

- **Properties**
 - Methodology
 - Technics
 - Organisation

- **Didactic**
 - Real products
 - Machines
 - Assembly

- **Experimental Area**
 - Slides
 - Didactic cells
 - Demonstrations

- **Visualization**
 - Researcher
 - Trainer
 - Factory staff

- **Workforce**
Integration of the process learning factory in the education of mechanical engineering students

Master thesis

Tutorial / Advanced Design Projects (ADP)

Lectures: Management of industrial production, Machine Tools and robots, Automation

Bachelor thesis

Lecture: Technology of manufacturing processes

Student workforce, Research assistant (HiWi)
“Learning-Cells” on the shop floor provide a short theoretical wrap-up of each method

„Learning-Cell“:
- 3 to 6 content tables
- Hardware exhibition supports the transfer to practical application

EXAMPLE SMED / QUICK-CHANGE-OVER

Step 1 MOTIVATION
Description problem in manufacturing and its consequence

Step 2 FUNCTIONALITY
Visualization of functionality and elements

Step 3 IMPLEMENTATION
Description of each implementation step

Step 4 EFFECTS
Demonstration of workflow and process improvement
The CiP curriculum addresses employees who are involved in the implementation of Lean methods.

<table>
<thead>
<tr>
<th>Phase 1: Lean understanding</th>
<th>Phase 2: Lean core elements</th>
<th>Phase 3: Lean culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean Basics</td>
<td>Lean Material Flow</td>
<td>Lean Thinking</td>
</tr>
<tr>
<td>Basics and diagnosis**</td>
<td>Just-in-Time**</td>
<td>Leadership for continuous improvement processes*</td>
</tr>
<tr>
<td>• The need for Lean</td>
<td>• Pull systems, Kanban, supermarket</td>
<td>• Improvement and leadership routines</td>
</tr>
<tr>
<td>• 7 types of waste</td>
<td>• Production control**</td>
<td>• Coaching principles</td>
</tr>
<tr>
<td>• Value stream mapping</td>
<td>• Heijunka, Levelling</td>
<td>Value added excellence in indirect processes**</td>
</tr>
<tr>
<td>• OEE</td>
<td>Flexible manpower systems**</td>
<td>• Lean Office with 5S</td>
</tr>
<tr>
<td>Value stream design**</td>
<td>• Yamazumi, flexible line design</td>
<td>• Job structure analysis</td>
</tr>
<tr>
<td>• Pull principle</td>
<td></td>
<td>• Value stream analysis and design</td>
</tr>
<tr>
<td>• Flow production</td>
<td></td>
<td>Methods- and transfer- competence for Lean trainers*</td>
</tr>
<tr>
<td>• In-takt production</td>
<td></td>
<td>• Sensitisation for Lean</td>
</tr>
<tr>
<td>• Value stream design</td>
<td></td>
<td>• Moderation techniques</td>
</tr>
<tr>
<td>Quality techniques**</td>
<td></td>
<td>• Workshop development</td>
</tr>
<tr>
<td>• Lean quality assurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Poka Yoke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Problem solving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Jidoka</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 1-day-Workshop
** 2-day-Workshop

Transformation of CiP to a Lean best practice enterprise

Institute of Production Management, Technology and Machine Tools | Prof. Dr.-Ing. E. Abele / Prof. Dr.-Ing. J. Metternich | 221128Se1 | 11
Previous cooperation partners in research and education

Research and vocational education with partner companies

Management Training

Vocational education with regional SME
In the past 5 years a range of managers and professionals have been educated at process learning factory CiP.
Research Topics of the CiP-Team

Competence Development for Continuous Improvement Processes
- Methods for institutionalization of continuous improvement processes in production environments
- Competency development for employees in continuous improvement processes

Flexible Machining
- Holistic approach for flexible machining in Germany, especially by Cellular Manufacturing
- Productivity improvements via implementing low-cost-automation in machining

Lean Production and Information Technology
- Simulation-based analysis and design of lean material and information flows
- Supporting lean production systems through information technology

Flexible Production and Intralogistic Systems
- Design and optimization of in-house value streams according to “Just-In-Time” principles
- Conception and implementation of flexible production and intralogistic systems
2011: Foundation of the „European Initiative on Learning Factories“ with the lead of TUD/PTW

Universities in Europe that work with CiP (extract)

- Escola Superior de Tecnologia de Setubal
- Ecole Centrale de Lyon
- Politecnico di Milano
- TU Wien
- University Split
- Hungarian Academy of Science
- Stockholm Institute of Education
Our vision for the year 2020:
Model company at Technische Universität Darmstadt

Intention of the model company

- Enlargement of current education offer for students and industry employees
- Research in comprehensive processes
- Integration and cooperation of several departments in a common object
- Motivation for multidisciplinary research activities
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Office</th>
<th>Phone</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eberhard Abele</td>
<td>Prof. Dr.-Ing. Head of the Institute</td>
<td>L1</td>
<td>01 109</td>
<td>-2156</td>
</tr>
<tr>
<td>Jörg Böllhoff</td>
<td>Dipl.-Wi.-Ing.</td>
<td>L1</td>
<td>01 230</td>
<td>-6550</td>
</tr>
<tr>
<td>Christian Hertle</td>
<td>M.Sc.</td>
<td>L1</td>
<td>01 231</td>
<td>-6840</td>
</tr>
<tr>
<td>Felix Wiegell</td>
<td>Dipl.-Ing.</td>
<td>L1</td>
<td>01 228</td>
<td>-6823</td>
</tr>
<tr>
<td>Stefan Seifermann</td>
<td>Dipl.-Wirtsch.-Ing. Team Leader</td>
<td>L1</td>
<td>01 230</td>
<td>-75305</td>
</tr>
<tr>
<td>Stefan Czajkowski</td>
<td>Dipl.-Wirtsch.-Ing.</td>
<td>L1</td>
<td>01 231</td>
<td>-75812</td>
</tr>
<tr>
<td>Jan Cachay</td>
<td>Dipl.-Wirtsch.-Ing.</td>
<td>L1</td>
<td>01 233</td>
<td>-6551</td>
</tr>
<tr>
<td>Markus Rößler</td>
<td>M. Sc.</td>
<td>L1</td>
<td>01 233</td>
<td>-75659</td>
</tr>
<tr>
<td>Michael Tisch</td>
<td>Dipl.-Wirtsch.-Ing.</td>
<td>L1</td>
<td>01 231</td>
<td>-6622</td>
</tr>
<tr>
<td>Stefan Metternich</td>
<td>Prof. Dr.-Ing. Deputy Head of the Institute</td>
<td>L1</td>
<td>01 106</td>
<td>-2156</td>
</tr>
<tr>
<td>Annette Heb</td>
<td>Team Assistant</td>
<td>L1</td>
<td>01 107</td>
<td>-6421</td>
</tr>
<tr>
<td>Christoph Schwarz</td>
<td>Technician</td>
<td>L1</td>
<td>07 202</td>
<td>-75302</td>
</tr>
</tbody>
</table>

Institute of Production Management, Technology and Machine Tools | Prof. Dr.-Ing. E. Abele / Prof. Dr.-Ing. J. Metternich | 221128Se1 | 17